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Bacterial diversity and community structure of two maize varieties (white and yellow)
during fermentation/steeping for ogi production, and the influence of spontaneous
fermentation on mycotoxin reduction in the gruel were studied. A total of 142 bacterial
isolates obtained at 24–96 h intervals were preliminarily identified by conventional
microbiological methods while 60 selected isolates were clustered into 39 OTUs
consisting of 15 species, 10 genera, and 3 phyla by 16S rRNA sequence analysis.
Lactic acid bacteria constituted about 63% of all isolated bacteria and the genus
Pediococcus dominated (white maize = 84.8%; yellow maize = 74.4%). Pediococcus
acidilactici and Lactobacillus paraplantarum were found at all steeping intervals of white
and yellow maize, respectively, while P. claussenii was present only at the climax stage
of steeping white maize. In both maize varieties, P. pentosaceus was found at 24–72 h.
Mycotoxin concentrations (μg/kg) in the unsteeped grains were: white maize (aflatoxin
B1 = 0.60; citrinin = 85.8; cyclopiazonic acid = 23.5; fumonisins (B1/B2/B3) = 68.4–
483; zearalenone = 3.3) and yellow maize (aflatoxins (B1/B2/M1) = 22.7–513;
citrinin = 16,800; cyclopiazonic acid = 247; fumonisins (B1/B2/B3) = 252–1,586;
zearalenone = 205). Mycotoxins in both maize varieties were significantly (p < 0.05)
reduced across steeping periods. This study reports for the first time: (a) the association
of L. paraplantarum, P. acidilactici, and P. claussenii with ogi production from maize,
(b) citrinin occurrence in Nigerian maize and ogi, and (c) aflatoxin M1, citrinin and
cyclopiazonic acid degradation/loss due to fermentation in traditional cereal-based
fermented food.

Keywords: diversity, ecology, fermentation, food safety, maize, mycotoxins, ogi

INTRODUCTION

Maize (Zea mays L.) is a staple food in many parts of the world including sub-Saharan Africa (SSA).
In Nigeria and some other West African countries, it is traditionally transformed by submerged
fermentation to ogi – a complementary weaning food for infants and young children, convenient
food for the sick, convalescent and elderly or quick breakfast mostly for those living in rural areas
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characterized by low income (Onyekwere et al., 1989; Steinkraus,
1996). Ogi is preferred by nearly 150 million West Africans
(Oguntoyinbo and Narbad, 2012) mainly due to the ease of
preparation of this gruel and the numerous associated nutritional
benefits including high calorie, minerals, vitamins, and probiotic
contents (Opere et al., 2012). The rich probiotic contents of ogi
and other traditionally fermented cereal foods result from the
indigenous beneficial microbial flora that play significant roles
during cereal fermentation to yield the final product (Odunfa,
1985). Furthermore, fermentation provides a variety of foods and
contributes to food preservation.

Fermentation during ogi production occurs in two distinct
stages: (1) steeping of maize prior to obtaining ogi gruel and
(2) souring of fermented ogi (Omemu, 2011). Several authors
have reported on ogi production from various varieties of maize
(white and yellow), from guinea corn, millet and sorghum after
steeping for either 24, 48, 72, or 96 h (Odunfa and Adeyele,
1985; Teniola and Odunfa, 2002; Teniola et al., 2005; Adebayo
and Aderiye, 2007; Adebayo-tayo and Onilude, 2008; Dike and
Sanni, 2010; Omemu, 2011; Banwo et al., 2012; Oyedeji et al.,
2013). Usual practice in the local/traditional setting, however,
is that maize is steeped for at least 48 h and may extend
to 96 h. In order to understand the ecology of species and
promote biotechnology through beneficial strain selection for
improved ogi production, microbial communities associated with
spontaneous maize fermentation to ogi have been characterized
and studied. The majority of the studies considered microbial
diversity in mashed fermented maize grains (Teniola et al.,
2005; Adebayo and Aderiye, 2007; Omemu, 2011) while others
characterized fermenters from souring ogi samples (Odunfa
and Adeyele, 1985; Teniola and Odunfa, 2002; Adebayo-tayo
and Onilude, 2008; Oguntoyinbo et al., 2011; Banwo et al.,
2012; Oguntoyinbo and Narbad, 2012); only Oyedeji et al.
(2013) examined maize steep liquor of 24–72 h for fermenter
diversity. From the aforementioned studies, Lactobacillus and
Leuconostoc have been reported as the occurring genera of lactic
acid bacteria (LAB) in maize steep liquor and fermented/souring
ogi while Pediococcus was only reported in fermented/souring
ogi.

Consumption of maize and maize-based food products is
threatened by the presence of fungal toxins (e.g., aflatoxins,
cyclopiazonic acid; fumonisins, and zearalenone; Warth et al.,
2012; Abia et al., 2013a; Kayode et al., 2013; Adetunji
et al., 2014a). Potential mycotoxin exposure through maize
consumption has been identified to be higher in rural areas of
developing countries where vulnerable consumers utilize broken
and damaged kernels for diverse dietary purposes; such kernels
are usually cheaper but could possibly be higher in mycotoxin
content (Abia et al., 2013b; Njumbe Ediage et al., 2013; Adetunji
et al., 2014b; Ezekiel et al., 2014). Efforts toward diversification
of maize meals for enhanced nutritional benefits led to ogi
production involving fermentation steps. There are suggestions
that traditional fermentation can reduce mycotoxin transfer
from grains to fermented foods whilst enhancing the nutrient
content of food through the synthesis of protein, vitamins, and
amino acids (Mokoena et al., 2005; Shetty and Jespersen, 2006;
Juodeikiene et al., 2012).

Past studies with respect to ogi production focused mostly on
studying microbial diversity and the roles of fermenters against
natural microbial contaminants in ogi production (Odunfa and
Adeyele, 1985; Teniola and Odunfa, 2002; Teniola et al., 2005;
Adebayo and Aderiye, 2007; Adebayo-tayo and Onilude, 2008;
Oguntoyinbo et al., 2011; Omemu, 2011; Banwo et al., 2012;
Oguntoyinbo and Narbad, 2012; Oyedeji et al., 2013). There
are also reports available on mycotoxin reduction mediated by
single or combined cultures of LAB and other fermentation
bacteria artificially inoculated into maize and other grains
(Mokoena et al., 2005; Shetty and Jespersen, 2006; Oluwafemi
and Da-Silva, 2009; Cho et al., 2010; Nyamete, 2013; Zhao
et al., 2015). In spite of the aforementioned reports, there is
no information on the influence of spontaneous fermentation
mediated by autochthonous microbial communities interacting
during ogi production on mycotoxin reduction in the gruel.
Such information could provide important data to establish the
relationship between fermentation and mycotoxin levels in ogi.
This study therefore aims to discover the diversity and succession
of bacteria during maize fermentation (steeping) into ogi, and
to determine possible mycotoxin reduction due to fermentation
influenced by indigenous microbial communities.

MATERIALS AND METHODS

Source of Maize Grains and Preparation
of Ogi Samples
Two maize varieties (white and yellow) were purchased from
Ikenne market in Ogun State, Nigeria and used for this study.
Grains of the white variety had been stored for less than one
month while those of the yellow variety were approximately
6 months old in store. The grains were sorted to remove
particulate matter and batched (750 g per batch) into the various
groups based on the steeping durations (48, 72, and 96 h). Each
batch was set up in triplicate, steeped in 1.5 L of clean tap water in
large plastic bowls with lids and allowed to undergo spontaneous
fermentation at ambient temperature. Steep liquor from the
batches was taken at intervals of 24–96 h and bacteria associated
with the steeping process were isolated and characterized. The pH
of each steep liquor was determined at 24–96 h.

At the end of each steeping duration (48, 72, and 96 h),
the remaining steep liquors were drained off and discarded.
The fermented/softened maize grains were processed into ogi
as previously described by Adebayo and Aderiye (2007). Ogi
samples obtained from the various batches representing the steep
durations were not left to sour but were immediately pressed to
remove excess water and taken for mycotoxin analysis.

Isolation of Bacteria from Maize Steep
Liquor
Serial dilutions of steep liquor obtained frommaize fermentation
batches were performed and used for isolation of aerobic and
anaerobic bacteria on plate count agar (PCA, Oxoid CM 325,
Unipath, Hampshire, England) and deMann Rogosa Sharpe
(MRS, Oxoid CM 361) agar, respectively (Haddadin et al., 2004).
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The pour-plate method was used for inoculation. MRS agar was
supplemented with sodium azide (0.01%, Labtech Chemicals,
Chinchwad Gaon, Pune, India) to inhibit aerobic bacteria and
facilitate the growth of LAB (Cho et al., 2013). PCA plates were
incubated for 24 h at 35◦C for isolation of mesophilic aerobic
bacteria while MRS agar plates were incubated for 24–72 h at
35–45◦C in an Anaerobic Gas-Pack system Jung et al. (2012). In
order to ensure good representation of isolates, all colonies were
sampled from plates containing fewer than 10 colonies or five
distinct colonies were randomly selected in colony dense plates.
Isolates obtained were purified by a two-time repeated streaking
on fresh agar plates of PCA and MRS, and maintained on same
agar slants at 4◦C at the Microbiology Laboratory of Babcock
University, Nigeria.

Identification of Bacterial Isolates
Morphological and Biochemical Identification
For preliminary identification of isolates to genus level, cell
morphology (Gram reaction, cell shape and arrangement) of
all 142 selected colonies were examined under a phase contrast
microscope (Olympus CX21FS1, Tokyo, Japan) after Gram
staining. Simple biochemical tests (e.g., catalase production,
motility, sugar fermentation, and acid and gas production in
MRS broth) were also carried out on each presumed LAB isolate
according to the method of Dykes (1994). Based on preliminary
data obtained, 80 (21 aerobic and 59 anaerobic) of the 142 isolates
were selected, preserved in nutrient broth (LAB ‘E’, LAB068,
UK) supplemented with 40% glycerol (BDH, Poole, England)
and sent to the Agricultural Research Council–Institute for Soil
Climate and Water (ARC–ISCW), South Africa for molecular
characterization.

Molecular Characterization of Isolates
Sixty (21 aerobic and 39 anaerobic) isolates were further selected
based on further preliminary tests, for DNA extraction and
molecular analysis to determine diversity and phylogeny of the
isolates. Genomic DNA extraction was performed according to
the protocol described in the ZR Soil Microbe DNA MiniPrep
extraction kit (Zymo Research Corporation, Irvine, CA, USA)
with modifications. DNA quantification was by the Qubit 2.0
Fluorometer (Q32867, Life Technologies, Grand Island, NY,
USA) while verification of DNA quality was performed on 1.5%
agarose gel electrophoresis prior to PCR.

All the isolated DNA sequences were used as template
to amplify bacterial 16S rRNA genes. PCR amplification was
performed with primers 341F (CCTACGGGAGGCAGCAG)
and 907R (CCGTCAATTCCTTTAAGTTT). The amplicon sizes
were ∼600 bp and were purified and sequenced using the
Sanger sequence approach at Inqaba Biotech, South Africa,
a commercial service provider. Bidirectional Sanger sequence
reads were obtained by standard procedures and the contigs
were assembled by the Bio-Edit sequence assembly program
(Hall, 1999). Sequence data obtained have been submitted to
GenBank under accession numbers: KR812487–KR812544 as
well as BWS2E and FWS4B (Table 1).

The 16S rRNA gene sequences were first affiliated to bacterial
taxa using SeqMatch on the Ribosomal Database Project (RDP)

TABLE 1 | Bacterial populations identified during steeping of maize for ogi
production.

Accession
numbers

OTUs1 Matched species (close
relatives from NCBI)

Phylum

KR812487 OTU2 Lactobacillus
paraplantarum (AJ306297)

Firmicutes

KR812488 OTU4 Pediococcus acidilactici
(AJ305320)

Firmicutes

KR812489 OTU4 P. pentosaceus (AJ305321) Firmicutes

KR812490 OTU1 P. acidilactici (AJ305320) Firmicutes

KR812491 OTU8 P. pentosaceus (AJ305321) Firmicutes

KR812492 OTU2 L. paraplantarum
(AJ306297)

Firmicutes

KR812493 OTU8 P. acidilactici (AJ305320) Firmicutes

KR812494 OTU2 L. paraplantarum
(AJ306297)

Firmicutes

KR812495 OTU8 P. pentosaceus (AJ305321) Firmicutes

KR812496 OTU2 L. paraplantarum
(AJ306297)

Firmicutes

KR812497 OTU8 P. pentosaceus (AJ305321) Firmicutes

KR812498 OTU8 P. pentosaceus (AJ305321) Firmicutes

KR812499 OTU7 P. acidilactici (AJ305320) Firmicutes

KR812500 OTU3 Pseudomonas hibiscicola
(AB021405)

Proteobacteria

KR812501 OTU4 P. acidilactici (AJ305320) Firmicutes

KR812502 OTU8 P. pentosaceus (AJ305321) Firmicutes

KR812503 OTU4 P. acidilactici (AJ305320) Firmicutes

KR812504 OTU7 P. acidilactici (AJ305320) Firmicutes

KR812505 OTU5 Ps. hibiscicola (AB021405) Proteobacteria

KR812506 OTU8 P. acidilactici (AJ305320) Firmicutes

KR812507 OTU6 L. paraplantarum
(AJ306297)

Firmicutes

KR812508 OTU7 P. acidilactici (AJ305320) Firmicutes

KR812509 OTU8 P. pentosaceus (AJ305321) Firmicutes

KR812510 OTU8 P. pentosaceus (AJ305321) Firmicutes

KR812511 OTU9 Ps. hibiscicola (AB021405) Proteobacteria

KR812512 OTU10 Bacillus thuringiensis
(D16281)

Firmicutes

KR812513 OTU16 B. mycoides (AB021192) Firmicutes

FWS4B OTU11 Enterobacter sp.
(KF599041)

Proteobacteria

KR812514 OTU12 P. acidilactici (AJ305320) Firmicutes

BWS2E OTU13 Moorella glycerini (U82327) Firmicutes

KR812515 OTU14 B. mycoides (AB021192) Firmicutes

KR812516 OTU15 P. pentosaceus (AJ305321) Firmicutes

KR812517 OTU16 B. mycoides (AB021192) Firmicutes

KR812518 OTU16 B. mycoides (AB021192) Firmicutes

KR812519 OTU16 B. mycoides (AB021192) Firmicutes

KR812520 OTU16 B. mycoides (AB021192) Firmicutes

KR812521 OTU8 P. acidilactici (AJ305320) Firmicutes

KR812522 OTU17 L. paraplantarum
(AJ306297)

Firmicutes

KR812523 OTU18 P. acidilactici (AJ305320) Firmicutes

KR812524 OTU19 P. acidilactici (AJ305320) Firmicutes

KR812525 OTU20 P. acidilactici (AJ305320) Firmicutes

KR812526 OTU21 P. acidilactici (AJ305320) Firmicutes

KR812527 OTU22 Ps. hibiscicola (AB021405) Proteobacteria

(Continued)
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TABLE 1 | Continued

Accession
numbers

OTUs1 Matched species (close
relatives from NCBI)

Phylum

KR812528 OTU23 Ps. hibiscicola (AB021405) Proteobacteria

KR812529 OTU24 Myroides marinus
(GQ857652)

Bacteroidetes

KR812530 OTU25 Ps. hibiscicola (AB021405) Proteobacteria

KR812531 OTU26 Alcaligenes faecalis
(AJ242986)

Proteobacteria

KR812532 OTU27 Enterobacter sp.
(KF588515)

Proteobacteria

KR812533 OTU28 Bordetella avium
(AF177666)

Proteobacteria

KR812534 OTU29 P. pentosaceus (AJ305321) Firmicutes

KR812535 OTU30 B. mycoides (AB021192) Firmicutes

KR812536 OTU31 M. marinus (GQ857652) Bacteroidetes

KR812537 OTU32 P. acidilactici (FJ905315) Firmicutes

KR812538 OTU33 P. acidilactici (KT427449) Firmicutes

KR812539 OTU34 Acinetobacter bereziniae
(Z93443)

Proteobacteria

KR812540 OTU35 P. claussenii (NR_042232) Firmicutes

KR812541 OTU36 Enterococcus faecium
(AJ301830)

Firmicutes

KR812542 OTU37 B. bronchiseptica (U04948) Proteobacteria

KR812543 OTU38 M. marinus (GQ857652) Bacteroidetes

KR812544 OTU39 Ac. bereziniae (Z93443) Proteobacteria

1Operational Taxonomic Units.

website (http://rdp.cme.msu.edu/index.jsp; Cole et al., 2009).
Multiple sequence alignments and clustering into operational
taxonomic units (OTUs) of the 60 sequences considered herein
were performed with Mothur (Schloss et al., 2009), using a 1%
dissimilarity level between OTUs (Table 1). The evolutionary
history was inferred using the Neighbor-Joining method (Saitou
and Nei, 1987).

Matched sequences, one for each OTU, were later obtained
from the GenBank using the accession numbers. These sequences
alongside the OTU representatives were used to construct a
library. All sequences were aligned using the multiple sequence
alignment software, MAFFT version 7 (Katoh and Standley,
2013). A region of specific data matrice was built on sequence
alignment and used to generate combined sequence alignment of
multiple regions. Finally, Mega4 software was used to generate
a phylogenetic tree consisting of representative OTUs and their
close counterparts (matched sequences; Tamura et al., 2007),
using the Aquifex aeolicus 16S rRNA gene as an outgroup
sequence. The percentages of replicate trees in which the
associated taxa clustered together in the bootstrap test (1000
replicates) are shown next to the branches (Felsenstein, 1985).

Analysis of Maize and Ogi Samples for
Mycotoxins
Prior to batching the maize grains for steeping and ogi production
(see section on Source of maize grains and preparation of ogi
samples), 500 g subsample of the grains was randomly taken,
milled and quartered. A quarter (125 g) of the milled sample

was taken for mycotoxin analysis and triplicate maize samples
were analyzed. About 80 g subsample of each pressed ogi (see
section on Source of maize grains and preparation of ogi samples)
was also taken and quartered. The maize and ogi samples
were immediately shipped on dry ice to IFA-Tulln, Austria for
mycotoxin analysis. All samples were kept at –20◦C at IFA-Tulln
until mycotoxin analysis. Mycotoxin analysis of maize and ogi
samples was performed by liquid chromatography tandem mass
spectrometry (LC–MS/MS).

Five grams of each homogenized representative maize or ogi
sample was weighed into a 50 ml polypropylene tube (Sarstedt,
Germany) and extracted with 15 ml acetonitrile/water/acetic
acid (79:20:1, v/v/v) for 90 min on a GFL 3017 rotary
shaker (GFL, Burgwedel, Germany). Extracts were diluted in
extraction solvent and injected into the LC instrument as
described in detail by Malachova et al. (2014). Mycotoxins
and other microbial metabolites described by Malachova et al.
(2014) were screened using a QTrap 5500 LC-MS/MS System
(Applied Biosystems, Foster City, CA, USA) equipped with
a TurboV electrospray ionization (ESI) source and a 1290
Series UHPLC System (Agilent Technologies, Waldbronn,
Germany). Chromatographic separation was performed at 25◦C
on a Gemini R© C18-column, 150 mm × 4.6 mm i.d., 5 μm
particle size, equipped with a C18 security guard cartridge,
4 mm × 3 mm i.d. (all from Phenomenex, Torrance,
CA, USA). Positive analyte identification was confirmed by
the acquisition of two MS/MS transitions which yielded
4.0 identification points according to commission decision
2002/657/EC. Furthermore, the LC retention time and the
intensity ratio of the two MRM transitions agreed with the
related values of an authentic standard within 0.1 min and
30% rel., respectively. Further details relating to spiking,
recoveries and additional LC–MS/MS parameters are as reported
in our previous papers (Warth et al., 2012; Abia et al.,
2013a).

Estimation of Mycotoxin Reduction in
Ogi Due to Fermentation
In order to estimate percentage reduction of each mycotoxin
due to fermentation influenced by fermenter diversity, the
percentage difference between mycotoxin levels in the grain
and final product (ogi) was calculated, taking into consideration
the sum of mycotoxin levels lost due to other processes
involved in ogi production (e.g., washing of grains, mashing
and sieving of slurry, and discarding of pomace). Details of
the influence of steeping and processing practices on reduction
of mycotoxins and other microbial metabolites during ogi
production will be described elsewhere (Okeke et al., manuscript
in preparation).

Data Analysis
SPSS 15.0 for Windows (SPSS, Inc., Chicago, IL, USA) was
used for data analyses of (a) occurrence of fermenter species,
and (b) mycotoxin reduction levels. Means were separated by
the Duncan’s Multiple Range test and tested for significance by
one-way analysis of variance at α = 0.05.
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RESULTS AND DISCUSSION

Bacterial Diversity During Steeping of
Maize for Ogi Production
A total of 142 bacterial isolates were obtained from the steeping
processes of both maize varieties; 73 and 69 isolates from white
and yellow varieties, respectively. The isolates obtained on PCA
(n = 51) represented aerobic or facultatively anaerobic species
while those on MRS agar (n = 91) were LAB and represented
obligate or facultative anaerobic homofermentative cocci or
heterofermentative cocci and rods. Preliminary identification
tests of all the 142 isolates suggested the LAB isolates were Gram-
positive, catalase negative and non-motile (Odunfa and Adeyele,
1985; Teniola and Odunfa, 2002; Teniola et al., 2005) and
belonged to Lactobacillus and Pediococcus, while other bacteria
belonged to Bacillus, Enterococcus and a range of rod-shaped
bacteria.

Our choice of cultivation techniques aided the discrimination
of living and dead microorganisms that are able to participate
in the fermentation process. However, to ensure proper
identification of the bacterial isolates, molecular techniques were
employed. Molecular characterization of the isolates clustered
them into 39 OTUs representing three phyla, eight families,
10 genera and 15 species (Table 1, Figures 1 and 2). The
families (Alcaligenaceae, Bacillaceae, Enterobacteriaceae,
Enterococcaceae, Flavobacteriaceae, Lactobacillaceae,
Moraxellaceae, and Xanthomonadaceae) are not shown in
the tables or figures.

Among the identified OTUs were four distinct LAB species –
L. paraplantarum, P. acidilactici, P. claussenii, and P. pentosaceus
(Table 1, Figure 2). Similar spectra and even more species
of LAB excluding L. paraplantarum and P. claussenii have
been previously reported in ogi made from a range of cereals
including guinea-corn, maize, millet, and sorghum (Teniola
and Odunfa, 2002; Teniola et al., 2005; Adebayo and Aderiye,
2007; Adebayo-tayo and Onilude, 2008; Oguntoyinbo et al.,
2011; Omemu, 2011; Banwo et al., 2012; Oguntoyinbo and
Narbad, 2012). L. plantarum and various species of Lactococcus
and Leuconostoc were previously reported in maize steep
liquor at 24–72 h by Oyedeji et al. (2013). However, this
first report of L. paraplantarum and absence of L. plantarum,
Lactococcus, and Leuconostoc in our study may have been
mainly due to selective/biased isolation/subculturing influenced
by culture-dependent methods, especially when L. plantarumwas
reported to be predominant during ogi production by previous
authors who employed molecular tools for species identification
(Oguntoyinbo et al., 2011; Banwo et al., 2012; Oguntoyinbo and
Narbad, 2012). L. paraplantarum was previously found in beer
(Curk et al., 1996) and subsequently in koko sour water from
millet in Ghana (Lei and Jakobsen, 2004).

Among the Pediococcus species we found, P. pentosaceus
had previously been identified in kenkey and white maize
grains steeped for 24 h for ogi (Halm et al., 1993; Teniola
et al., 2005) while P. acidilactici was also found in kenkey
and during maize fermentation for masa (Oyeyiola, 1990;
Halm et al., 1993; Fowoyo and Ogunbanwo, 2010; Sanni and

FIGURE 1 | Phylogenetic tree illustrating major bacterial taxa identified
during steeping of maize for ogi production and their relatives
obtained from the Seqmatch (RDP).

Adesulu, 2013) and recently, in sorghum ogi (Banwo et al.,
2012). Our study is therefore the first report on association
of P. acidilactici and P. claussenii with ogi production from
maize. Additional isolates obtained in the present study belonged
to Acinetobacter, Alcaligenes, Bacillus, Bordetella, Enterobacter,
Enterococcus, Moorella, Myroides, and Pseudomonas (Table 1).
These genera are known soil bacteria, human, and animal
pathogens, and are of no value to fermentation except for Bacillus,
Enterobacter, and Enterococcus which had been detected during
food fermentations in Africa and Asia (Abriouel et al., 2006;
Chiang et al., 2006; Oguntoyinbo et al., 2010; Oguntoyinbo and
Narbad, 2012).

Maize varietal specific distribution of the LAB species is shown
in Figure 3. Overall, LAB constituted 62.3–63.0% of all isolated
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FIGURE 2 | Operational Taxonomic Units (OTUs) and number of
sequences per OTU.

bacteria from steep water of both maize varieties; Pediococcus
dominated (84.8% in white maize and 74.4% in yellow maize)
while the occurrence of Lactobacillus was 15.2 and 25.6% in
white and yellow maize, respectively. The frequencies of the
LAB isolates by OTU cluster in each maize variety are given
here: white maize (Pediococcus = 20.5%, Lactobacillus = 5.1%);
yellow maize: (Pediococcus = 15.4%, Lactobacillus = 2.6%). In
terms of species distribution, Pediococcus acidilactici (54.3%) and
P. pentosaceus (53.5%) significantly (p< 0.05) predominated over
other species in steep water of white and yellow maize varieties,
respectively, while P. claussenii (8.7%) was found only in white

FIGURE 3 | Occurrence of lactic acid bacteria in steep liquor of two
varieties of maize grains fermented for 94 h. Vertical lines on bars
indicate the standard error of mean (α = 0.05). Bars with different alphabets
are significantly different by DMRT at α = 0.05.

maize (Figure 3). Our findings contrast with previous reports
on several species of Lactobacillus (e.g., L. delbrueckii subsp.
bulgaricus, L. fermentum, and L. plantarum) predominating in
ogi, it’s fermentation processes, or in other traditional foods such
as fermenting cassava for garri, raw milk for nono, massa, and
wara (Johansson et al., 1995; Teniola and Odunfa, 2002; Adebayo
and Aderiye, 2007; Adebayo-tayo and Onilude, 2008; Fowoyo
and Ogunbanwo, 2010; Oguntoyinbo et al., 2011; Omemu, 2011;
Banwo et al., 2012; Oguntoyinbo and Narbad, 2012; Obinna-
Echem et al., 2013; Oyedeji et al., 2013). This emphasizes the
need for more elaborate efforts toward studying the diversity of
beneficial natural flora of maize and exploitation of such bacteria
for traditional food processes.

Bacterial Succession During Steeping of
Maize for Ogi Production
Molecular analysis strongly indicated succession among the
bacterial communities during the steeping/fermentation process
of both maize varieties (Figures 4 and 5). Succession patterns
differed from previous reports (Teniola et al., 2005; Adebayo
and Aderiye, 2007; Omemu, 2011; Oyedeji et al., 2013) and
also in the two maize varieties though the LAB isolates
dominated through the successional periods. For the white maize,
P. acidilactici occurred at all stages of steeping [pioneered at 24 h
(occurrence = 26.1%) and climaxed at 96 h (occurrence = 60%)]
while L. paraplantarum (4.4–18.8%) and P. pentosaceus (6.3–
75%) were detected only at seral stages (24–48 h and 24–72 h,
respectively; Figure 4). Pediococcus claussenii (40%) was detected
only at the climax stage. In addition, the non-LAB species (3.1–
30.4%) were prominent only at the early stages (24–48 h) with
Bacillus mycoides (30.4%) dominating at the pioneer stage. In
the yellow maize, L. paraplantarum was detected from pioneer
(occurrence = 15.8%) to climax (occurrence = 44.4%) of steeping
duration. Pediococcus pentosaceus (10.5–62.5%) co-pioneered
with L. paraplantarum, P. acidilactici (21.1%), and the non-LAB
species (5.3–26.3%), extending to 72 h before disappearing from
the community while P. acidilactici was subsequently detected
at climax where it dominated (occurrence = 55.6%). Clearly, a
wide range of beneficial, opportunistic and potentially pathogenic
microbial communities were present and actively interacting in
the microenvironment.

The presence and dominance of LAB species such as
L. paraplantarum, P. acidilactici, and P. pentosaceus at various
steeping times suggest that these and other previously reported
LAB species not found in our study are the primary and
influential bacterial species involved in the fermentation of maize
to ogi. These LAB species may therefore be exploited as probiotics
and potential starter cultures. The fluctuations of the pH from
4.63 through 5.00 to 4.00 in white maize and from 4.77 through
5.08 to 4.23 in yellow maize steep liquors indicate fluctuations
in acid production and release into the microenvironment
(Adebayo and Aderiye, 2007; Oyedeji et al., 2013). Furthermore,
the extremely low pH (4.00) environment at 96 h of white
maize fermentation created by P. acidilactici may have led to the
entry and stabilization of P. claussenii in the succession as this
LAB species has only been implicated in spoilage of fermented
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FIGURE 4 | Changes in bacterial community structure and pH during steeping of white maize grains for ogi production.

beverage (beer) due to diacetyl production (Bergsveinson et al.,
2012). It was obvious that the non-LAB isolates were excluded
from the environment marked by higher acidity (after 48 h) due
to intense competition from LAB isolates capable of producing
antibacterial compounds such as hydrogen peroxide, diacetyl,
and bacteriocins during the process of sugar utilization to release
acids (Teniola and Odunfa, 2002; Ogunbanwo et al., 2003, 2004;
Adebayo and Aderiye, 2007; Dike and Sanni, 2010; Oyedeji et al.,
2013), though these chemical products were not studied here.

Occurrence of Major Mycotoxins in
White and Yellow Maize Grain
The concentrations of mycotoxins quantified in unsteeped
grains of the two maize varieties are shown in Figures 6 and 7.
Seven mycotoxins [aflatoxin B1 (AFB1) = 0.60 μg/kg; citrinin
(CIT) = 85.8 μg/kg; cyclopiazonic acid (CPA) = 23.5 μg/kg;
fumonisin B1 (FB1) = 483 μg/kg; fumonisin B2
(FB2) = 229 μg/kg; fumonisin B3 (FB3) = 68.4 μg/kg;
zearalenone (ZEN) = 3.3 μg/kg] were found in the white grain
(Figure 6), while nine mycotoxins [AFB1 = 513 μg/kg; aflatoxin
B2 (AFB2) = 75.1 μg/kg; aflatoxin M1 (AFM1) = 22.7 μg/kg;
CIT = 16,800 μg/kg; CPA = 247 μg/kg; FB1 = 1,586 μg/kg;
FB2 = 456 μg/kg; FB3 = 252 μg/kg; ZEN = 205 μg/kg] occurred
in the yellow variety (Figure 7). Mycotoxin levels in the yellow
grains stored for about six months were at least twofold higher
than the levels in the white variety barely stored for a month.

Citrinin, a mycotoxin produced by Aspergillus and Penicillium,
is reported here for the first time in Nigerian maize and ogi
(see section on Reduction of mycotoxins in ogi influenced by
fermentation) though it has previously been reported in maize
from India and fermented maize from Ghana (Vella et al., 1995;
Janardhana et al., 1999). The spectrum and levels of the other
mycotoxins reported in this study, especially the increased levels
in stored yellow maize grain, are similar to those previously
reported across sub-Saharan Africa. This provides further
evidence that mycotoxin contamination of maize and especially
their accumulation under poor storage conditions remain a
major food safety challenge warranting urgent attention in many
countries in SSA (Udoh et al., 2000; Kankolongo et al., 2009;
Ncube et al., 2011; Warth et al., 2012; Abia et al., 2013a; Adetunji
et al., 2014a).

Reduction of Mycotoxins in Ogi
Influenced by Fermentation
Estimated percentage reductions of mycotoxins in white and
yellow ogi due to fermentation are shown in Figures 6 and 7.
Estimates were based on percentage differences between
mycotoxin levels in the grain and ogi, taking into consideration
the sum of mycotoxin levels lost due to other processes
involved in ogi production. Details on the influence of steeping
and processing practices on reduction of mycotoxins and
other microbial metabolites during ogi production will be
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FIGURE 5 | Changes in bacterial community structure and pH during steeping of yellow maize grains for ogi production.

described elsewhere (Okeke et al., manuscript in preparation).
The level of AFB1 (0.60 μg/kg) in white maize was very
low to determine reduction, hence this was excluded from
the percentage reduction estimations. On the other hand,
CPA and AFM1 were reduced to levels below the limits
of detection (LOD; CPA: <25 μg/kg; AFM1: <0.4 μg/kg,
equivalent to 100% reduction) by fermentation of white and
yellow maize, respectively, into ogi at all time intervals.
Additionally, CIT and ZEN in white maize were completely
lost (levels detected in ogi were <LOD; CIT ≤ 2.5 μg/kg,
ZEN ≤ 0.05 μg/kg) during steeping for 72 and 48 h, respectively,
while levels of CPA in yellow maize completely diminished
(<LOD) at 48 h of steeping (Figures 6 and 7). This is the
first report of AFM1, CIT and CPA degradation/loss due to
fermentation in any traditional cereal-based fermented food
product.

There were significant (p < 0.05) differences in the percentage
reductions of mycotoxins across steeping time intervals (48–96 h)
for both maize varieties though no time-dependent reduction of
the mycotoxins was recorded for the white maize (Figure 6).
For the yellow maize, percentage reduction of CIT and FB3
significantly (p < 0.05) increased as steeping time increased
while for other toxins (AFB1, AFB2, FB1, and FB2) percentage
reduction dropped significantly (p < 0.05) as steeping time
increased from 48 to 96 h (Figure 7). Reduction levels of CPA
(100–98.1%) and ZEN (99.2–96.4%) dropped insignificantly from
48 to 96 h. Generally, steeping of maize for 48 h drastically

reduced fumonisin (FB1, FB2, and FB3) levels in both varieties
(white maize: 65.7–80.1%; yellow maize: 78.7–88.8%) as well as
aflatoxins (AFB1: 60.8%; AFB2: 82.8%) and ZEN (99.2%) in the
yellow variety.

The extremely high levels of AFB1, CIT, CPA, FB1, and ZEN
reported in raw maize samples in this study raise questions
about the safety of consuming maize-based foods contaminated
by mycotoxins. These mycotoxins exert diverse individual or
synergistic toxicological effects (hepatotoxicity, nephrotoxicity,
genotoxicity, teratogenicity, and immunotoxicity) on human
and animal systems (Vella et al., 1995; Janardhana et al.,
1999; Bondy and Pestka, 2000; Council for Agricultural Science
Technology [Cast], 2003; Flajs and Peraica, 2009). However,
the remarkable reduction of all the mycotoxins especially after
48 h of steeping proves that fermentation mediated by natural
maize flora reduces mycotoxin levels of ogi, thus making it
a safer food for consumption than its parent maize material.
For fermentation to be very effective in producing foods with
the safest levels of mycotoxins it is important to ensure that
mycotoxin control begins from the field through post-harvest
(storage and handling); this will lead to having unsteeped maize
with low mycotoxin levels.

Some mycotoxins (e.g., AFB1, FB1, and ZEN) have been
shown to be degraded to various extents by fermentation bacteria
or bio-transformed during fermentation processes (Mokoena
et al., 2005; Shetty and Jespersen, 2006; Oluwafemi and Da-
Silva, 2009; Cho et al., 2010; Nyamete, 2013; Ezekiel et al.,
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FIGURE 6 | Reduction (%) of mycotoxins in freshly fermented ogi due to fermentation during steeping of white maize grains. Concentrations given on
x-axis indicate mycotoxin levels in raw maize grains before steeping. Cyclopiazonic acid (23.5 μg/kg) was reduced by 100% at all time intervals. Vertical lines on bars
indicate the standard error of mean (α = 0.05). Bars with different alphabets are significantly different by DMRT at α = 0.05.

2015; Zhao et al., 2015) and we observed same. However, our
study contradicts the reports of Fandohan et al. (2005) and
Mokoena et al. (2006) who reported very low reduction levels
of 18–28% for AFB1 under spontaneous fermentation conditions
and suggested increased but insignificant toxin reduction with
prolonged fermentation time. The higher reduction (>80%)
observed for ZEN at all time intervals in contrast to the
lower levels (∼45%) previously reported by Zhao et al. (2015)
when strains of L. plantarum were used to remove ZEN from
MRS medium, may indicate that mycotoxin degradation during
fermentation may either be strain specific or require synergistic
interaction of more than one species/strain. The fact that non-
LAB species (e.g., Bacillus subtilis) has been implicated in ZEN
degradation (up to 99% of 1 mg/kg after 24 h) in liquid
medium (Cho et al., 2010) supports our findings of higher
reduction at 48 h in both maize varieties. At 48 h, bacterial
population was highest in both maize varieties (occurrence: white
maize = 32/73, yellow maize = 33/69) and species diversity
in the microenvironment included LAB and non-LAB species
including numerous colonies of Bacillus species. In our study,
we did not find any bio-transformation product of ZEN (e.g.,
β-zearalenol – a less estrogenic form) in contrast to reports from
Mizutani et al. (2011) and Ezekiel et al. (2015) which showed
that fermentation, especially submerged, leads to β-zearalenol
formation. An assumption may be that the product released was

further degraded by specialized bacteria – a finding that requires
further investigation.

Citrinin and FB3 reduction levels increased with prolonged
fermentation time while levels of other mycotoxins (including
AFB1) reduced. This may be linked to specialization by bacteria –
it is most likely that the LAB isolates which dominated the
latter stages of the successional chain were fully responsible for
CIT and FB3 degradation or detoxification; this needs to be
proven. However, the binding of mycotoxins (e.g., aflatoxins)
to the surface of Lactobacillus species (Haskard et al., 2001;
Oluwafemi and Da-Silva, 2009) or reformation of aflatoxins, for
example, in increased acidic conditions as explained by Kpodo
et al. (1996) may have been the underlying factor of the lower
reduction of some mycotoxins as fermentation days extended.
Cho et al. (2010) and Zhao et al. (2015) suggested that the viable
cell count of bacteria influences toxin detoxification, while Guan
et al. (2005) reported the involvement of bacterial peptidoglycans
in binding foreign matter in order to confer protection against
infections. In view of these suggestions and the fact that Cho
et al. (2010) and other authors reported the involvement of non-
LAB species and some fungi in mycotoxin detoxification, we
propose that mycotoxins (excluding aflatoxins) whose reduction
levels decreased with prolonged fermentation were most likely
due to more diverse bacteria with mycotoxin-binding capacity
existing in the early stages of succession. As one moves up the
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FIGURE 7 | Reduction (%) of mycotoxins in freshly fermented ogi due to fermentation during steeping of yellow maize grains. Concentrations given on
x-axis indicate mycotoxin levels in raw maize grains before steeping. Aflatoxin M1 (22.7 μg/kg) was reduced by 100% at all time intervals. Vertical lines on bars
indicate the standard error of mean (α = 0.05). Bars with different alphabets are significantly different by DMRT at α = 0.05.

successional chain toward climax, the diversity of bacteria in
themicroenvironment reduces which influences effective binding
of mycotoxins; hence decreased reduction levels. Our reports
on reduction levels of aflatoxins being decreased with increased
fermentation time fully agrees with the idea on acidification
of the environment which interferes with aflatoxin reduction
since pH of the steep liquor dropped drastically (Kpodo et al.,
1996).

CONCLUSION

The combined application of culture-dependent and molecular
tools in this study has provided verified information on
the community structure of bacteria playing successive
roles during steeping of maize for ogi production. This
has also translated into tracing the relationship between
bacterial diversity and mycotoxin reduction under natural
fermentation of maize to ogi. Mycotoxin levels in the unsteeped
maize grains which were quite high were drastically and
significantly reduced during the steeping/fermentation
process mediated by diverse bacterial communities including
fermenters. In view of our findings, ogi may be a relatively
safe food for human consumption in terms of mycotoxin
contamination. The present study identified knowledge gaps
worth investigating and, therefore, propose the following:
(a) a comprehensive study of the diversity and successional

pattern of bacteria/microbes from steeping to souring,
and how these influence mycotoxin transfer from raw
maize to soured ogi; (b) study to understand which specific
bacterial/microbial populations degrade or detoxify specific
mycotoxins under natural fermentation conditions using
labeled mycotoxins and metabolomics tools. This will
enhance selection of appropriate starter cultures capable of
optimal fermentation while at the same time, detoxifying
mycotoxins.
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